English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Review Article

Flavin-based electron bifurcation, a new mechanism of biological energy coupling

MPS-Authors
/persons/resource/persons254176

Buckel,  Wolfgang
Max Planck Fellow Mechanism of Enzymes from Anaerobic Bacteria, Alumni, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254760

Thauer,  Rudolf Kurt
Emeriti Biochemistry of Anaerobic Microorganisms, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Buckel, W., & Thauer, R. K. (2018). Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chemical Reviews, 118(7), 3862-3886.


Cite as: https://hdl.handle.net/21.11116/0000-0004-45F2-D
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.