English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Soft erythrocyte-based bacterial microswimmers for cargo delivery

MPS-Authors
/persons/resource/persons254668

Schauer,  O.
Microbial Networks, Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

/persons/resource/persons254726

Sourjik,  V.
Microbial Networks, Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Alapan, Y., Yasa, O., Schauer, O., Giltinan, J., Tabak, A., Sourjik, V., et al. (2018). Soft erythrocyte-based bacterial microswimmers for cargo delivery. SCIENCE ROBOTICS, 3(17): UNSP eaar4423. doi:10.1126/scirobotics.aar4423.


Cite as: https://hdl.handle.net/21.11116/0000-0004-45F6-9
Abstract
Bacteria-propelled biohybrid microswimmers have recently shown to be able to actively transport and deliver cargos encapsulated into their synthetic constructs to specific regions locally. However, usage of synthetic materials as cargo carriers can result in inferior performance in load-carrying efficiency, biocompatibility, and biodegradability, impeding clinical translation of biohybrid microswimmers. Here, we report construction and external guidance of bacteria-driven microswimmers using red blood cells (RBCs; erythrocytes) as autologous cargo carriers for active and guided drug delivery. Multifunctional biohybrid microswimmers were fabricated by attachment of RBCs [loaded with anticancer doxorubicin drug molecules and superparamagnetic iron oxide nanoparticles (SPIONs)] to bioengineered motile bacteria, Escherichia coli MG1655, via biotin-avidin-biotin binding complex. Autonomous and on-board propulsion of biohybrid microswimmers was provided by bacteria, and their external magnetic guidance was enabled by SPIONs loaded into the RBCs. Furthermore, bacteria-driven RBC microswimmers displayed preserved deformability and attachment stability even after squeezing in microchannels smaller than their sizes, as in the case of bare RBCs. In addition, an on-demand light-activated hyperthermia termination switch was engineered for RBC microswimmers to control bacteria population after operations. RBCs, as biological and autologous cargo carriers in the biohybrid microswimmers, offer notable advantages in stability, deformability, biocompatibility, and biodegradability over synthetic cargo-carrier materials. The biohybrid microswimmer design presented here transforms RBCs from passive cargo carriers into active and guidable cargo carriers toward targeted drug and other cargo delivery applications in medicine.