English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Grazing animals drove domestication of grain crops

MPS-Authors
/persons/resource/persons204298

Spengler,  Robert N.
Archaeology, Max Planck Institute for the Science of Human History, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Spengler, R. N., & Mueller, N. G. (2019). Grazing animals drove domestication of grain crops. Nature Plants, 5(7), 656-662. doi:10.1038/s41477-019-0470-4.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4212-D
Abstract
In addition to large-seeded cereals, humans around the world during the mid-Holocene started to cultivate small-seeded species of herbaceous annuals for grain, including quinoa, amaranth, buckwheat, the millets and several lost crops domesticated in North America. The wild ancestors of these crops have small seeds with indigestible defences and do not germinate readily. Today, these wild plants exist in small fragmentary stands that are not appealing targets for foragers. This combination of traits has led many to argue that they must have been a food of last resort. We propose a new explanation: the domestication of small-seeded annuals involved a switch from endozoochoric dispersal (through animal ingestion) to human dispersal. Humans encountered these plants in dense stands created by grazing megafauna, making them easy to harvest. As humans began to cultivate these plants they took on the functional role of seed dispersers, and traits associated with endozoochory were lost or reduced. The earliest traits of domestication—thinning or loss of indigestible seed protections, loss of dormancy and increased seed size—can all be explained by the loss of the ruminant dispersal process and concomitant human management of wild stands. We demonstrate, by looking at rangeland ecology and herd animal herbivory patterns, that the progenitors of all of these species evolved to be dispersed by megafaunal ruminants and that heavy herbivory leads to dense homogenous clusters of endozoochoric plants. Hence, easily harvested stands on nitrogen hot spots near water sources would have existed in regions where these plants were domesticated. Future experimental and ecological studies could enhance our understanding of the relationships between specific crops and their possible ruminant dispersers.