Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum gravity and gravitational-wave astronomy

MPG-Autoren
/persons/resource/persons4348

Calcagni,  Gianluca
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192103

Marsat,  Sylvain
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons214785

Tamanini,  Nicola
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1907.02489.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Calcagni, G., Kuroyanagi, S., Marsat, S., Sakellariadou, M., Tamanini, N., & Tasinato, G. (2019). Quantum gravity and gravitational-wave astronomy. Journal of Cosmology and Astroparticle Physics, 2019: 012. doi:10.1088/1475-7516/2019/10/012.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-48D4-C
Zusammenfassung
We investigate possible signatures of quantum gravity which could be tested
with current and future gravitational-wave (GW) observations. In particular, we
analyze how quantum gravity can influence the GW luminosity distance, the time
dependence of the effective Planck mass and the instrumental strain noise of
interferometers. Using both model-dependent and model-independent formulae, we
show that these quantities can encode a non-perturbative effect typical of all
quantum-gravity theories, namely the way the dimension of spacetime changes
with the probed scale. Effects associated with such dimensional flow might be
tested with GW observations and constrained significantly in theories with a
microscopically discrete spacetime geometry, more strongly than from
propagation-speed constraints. Making use of public LIGO data as well as of a
simulated higher-redshift LISA source, we impose the first, respectively,
actual and mock constraints on quantum-gravity parameters affecting the GW
luminosity distance and discuss specific theoretical examples. If also the
Newtonian potential is modified but light geodesics are not, then solar-system
bounds may be stronger than GW ones. Yet, for some theories GW astronomy can
give unique information not available from solar-system tests.