Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantum Chemistry and EPR Parameters

MPG-Autoren
/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Neese, F. (2017). Quantum Chemistry and EPR Parameters. Emagres, 6(1), 1-22. doi:0.1002/9780470034590.emrstm1505.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-192E-B
Zusammenfassung
In this short article, the relationship of the spin-Hamiltonian parameters occurring in electron paramagnetic resonance spectroscopy with the geometric and electronic structure of molecules is described. Starting from the nonrelativistic many-particle Hamiltonian and the necessary relativistic extensions, an effective Hamiltonian approach is introduced that leads to closed-form expressions for all spin-Hamiltonian (SH) parameters that are correct to second order. The translation into an analytic derivative linear-response treatment is briefly described. The latter is the method of choice for actual implementations in the framework of quantum chemical approximations. Of the myriad of possible approximations, Hartree-Fock theory, coupled-cluster theory, and density functional theory are briefly reviewed. To illustrate the subtleties met in calculating SH parameters, the issues related to calculating isotropic and dipolar hyperfine interactions are discussed in some detail. Methods to treat large systems and environment effects are briefly touched before concluding the article with an illustrative example of a combined EPR spectroscopic and quantum chemical study on an enzyme active site.