English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network: Computation in Neural Systems, 12(3), 289-316. doi:10.1080/net.12.3.289.316.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4C90-4
Abstract
We present a generalized reverse correlation technique that can be used to estimate the spatio-temporal receptive fields (STRFs) of sensory neurons from their responses to arbitrary stimuli such as auditory vocalizations or natural visual scenes. The general solution for STRF estimation requires normalization of the stimulus-response cross-correlation by the stimulus autocorrelation matrix. When the second-order stimulus statistics are stationary, normalization involves only the diagonal elements of the Fourier-transformed auto-correlation matrix (the power spectrum). In the non-stationary case normalization requires the entire auto-correlation matrix. We present modelling studies that demonstrate the feasibility and accuracy of this method as well as neurophysiological data comparing STRFs estimated using natural versus synthetic stimulus ensembles. For both auditory and visual neurons, STRFs obtained with these different stimuli are similar, but exhibit systematic differences that may be functionally significant. This method should be useful for determining what aspects of natural signals are represented by sensory neurons and may reveal novel response properties of these neurons.