English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Woolley, S. M., Fremouw, T. E., Hsu, A., & Theunissen, F. E. (2005). Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nature Neuroscience, 8(10), 1371-1379. doi:10.1038/nn1536.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4CE6-4
Abstract
Vocal communicators discriminate conspecific vocalizations from other sounds and recognize the vocalizations of individuals. To identify neural mechanisms for the discrimination of such natural sounds, we compared the linear spectro-temporal tuning properties of auditory midbrain and forebrain neurons in zebra finches with the statistics of natural sounds, including song. Here, we demonstrate that ensembles of auditory neurons are tuned to auditory features that enhance the acoustic differences between classes of natural sounds, and among the songs of individual birds. Tuning specifically avoids the spectro-temporal modulations that are redundant across natural sounds and therefore provide little information; rather, it overlaps with the temporal modulations that differ most across sounds. By comparing the real tuning and a less selective model of spectro-temporal tuning, we found that the real modulation tuning increases the neural discrimination of different sounds. Additionally, auditory neurons discriminate among zebra finch song segments better than among synthetic sound segments.