English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The vocal repertoire of the domesticated zebra finch: A data-driven approach to decipher the information-bearing acoustic features of communication signals

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Elie, J. E., & Theunissen, F. E. (2016). The vocal repertoire of the domesticated zebra finch: A data-driven approach to decipher the information-bearing acoustic features of communication signals. Animal Cognition, 19(2), 285-315. doi:10.1007/s10071-015-0933-6.


Cite as: https://hdl.handle.net/21.11116/0000-0004-4CEA-0
Abstract
Although a universal code for the acoustic features of animal vocal communication calls may not exist, the thorough analysis of the distinctive acoustical features of vocalization categories is important not only to decipher the acoustical code for a specific species but also to understand the evolution of communication signals and the mechanisms used to produce and understand them. Here, we recorded more than 8000 examples of almost all the vocalizations of the domesticated zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We characterized each vocalization type using complete representations that avoided any a priori assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more intuitive interpretations. We then used these acoustical features to rigorously determine the potential information-bearing acoustical features for each vocalization type using both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically across categories and that would be generated by active control of both the vocal organ (source) and the upper vocal tract (filter).