English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov

MPS-Authors
/persons/resource/persons210552

Kuever,  Jan
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210526

Könneke,  Martin
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210393

Galushko,  Alexander
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kuever, J., Könneke, M., Galushko, A., & Drzyzga, O. (2001). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 51, 171-177.


Cite as: https://hdl.handle.net/21.11116/0000-0004-50BF-B
Abstract
A mesophilic, sulfate-reducing bacterium (strain SaxT) was isolated from marine coastal sediment in the Baltic Sea and originally described as a 'Desulfoarculus' sp. It used a large variety of substrates, ranging from simple organic compounds and fatty acids to aromatic compounds as electron donors. Autotrophic growth was possible with H2, CO2 and formate in the presence of sulfate. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur and nitrate were not reduced. Fermentative growth was obtained with pyruvate, but not with fumarate or malate. Substrate oxidation was usually complete leading to CO2, but at high substrate concentrations acetate accumulated. CO dehydrogenase activity was observed, indicating the operation of the CO dehydrogenase pathway (reverse Wood pathway) for CO2 fixation and complete oxidation of acetyl-CoA. The rod-shaped cells were 0.8-1.0 microm wide and 1.5-2.5 microm long. Spores were not produced and cells stained Gram-negative. The temperature limits for growth were between 10 and 42 degrees C (optimum growth at 28-32 degrees C). Growth was observed at salinities ranging from 5 to 110 g NaCl l(-1), with an optimum at 10-25 g NaCl l(-1). The G+C content of the DNA was 62.4 mol%. Vitamins were required for growth. Based on the 16S rRNA gene sequence, strain SaxT represents a new genus within the delta-subclass of the Proteobacteria. The name Desulfotignum balticum gen. nov., sp. nov. is proposed. After the 16S rDNA sequences of all members of the genus Desulfobacterium were published (GenBank accession nos. AJ237601-AJ237604, AJ237606, AJ237607), the need to reclassify most members of the genus Desulfobacterium became obvious due to their strong phylogenetic affiliation to other genera. Here, we propose to reclassify Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. Desulfotignum balticum, Desulfobacterium phenolicum and Desulfobacula toluolica contain cellular fatty acids which have so far only been found in members of the genus Desulfobacter.