English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

QM/MM study of the taxadiene synthase mechanism

MPS-Authors
/persons/resource/persons135016

van Rijn,  Jeaphianne
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons200533

Escorcia Cabrera,  Andrés Mauricio
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59045

Thiel,  Walter
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

jcc25846-sup-0001-supinfo_pub 631.pdf
(Supplementary material), 2MB

Citation

van Rijn, J., Escorcia Cabrera, A. M., & Thiel, W. (2019). QM/MM study of the taxadiene synthase mechanism. Journal of Computational Chemistry, 40(21), 1902-1910. doi:10.1002/jcc.25846.


Cite as: http://hdl.handle.net/21.11116/0000-0004-5765-9
Abstract
Combined quantum mechanics/molecular mechanics (QM/MM) calculations were used to investigate the reaction mechanism of taxadiene synthase (TXS). TXS catalyzes the cyclization of geranylgeranyl diphosphate (GGPP) to taxadiene (T) and four minor cyclic products. All these products originate from the deprotonation of carbocation intermediates. The reaction profiles for the conversion of GGPP to T as well as to minor products were calculated for different configurations of relevant TXS carbocation complexes. The QM region was treated at the M06‐2X/TZVP level, while the CHARMM27 force field was used to describe the MM region. The QM/MM calculations suggest a reaction pathway for the conversion of GGPP to T, which slightly differs from previous proposals regarding the number of reaction steps and the conformation of the carbocations. The QM/MM results also indicate that the formation of minor products via water‐assisted deprotonation of the carbocations is highly exothermic, by about −7 to −23 kcal/mol. Curiously, however, the computed barriers and reaction energies indicate that the formation of some of the minor products is more facile than the formation of T. Thus, the present QM/MM calculations provide detailed insights into possible reaction pathways and into the origin of the promiscuity of TXS, but they do not reproduce the product distribution observed experimentally.