Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Confinement and substrate topography control cell migration in a 3D computational model


Ziebert,  Falko
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Winkler, B., Aranson, I. S., & Ziebert, F. (2019). Confinement and substrate topography control cell migration in a 3D computational model. Communications Physics, 2: 82. doi:10.1038/s42005-019-0185-x.

Cite as: https://hdl.handle.net/21.11116/0000-0004-5F77-D
Cell movement in vivo is typically characterized by strong confinement and heterogeneous, three-dimensional environments. Such external constraints on cell motility are known to play important roles in many vital processes e.g. during development, differentiation, and the immune response, as well as in pathologies like cancer metastasis. Here we develop a physics-driven three-dimensional computational modeling framework that describes lamellipodium-based motion of cells in arbitrarily shaped and topographically structured surroundings. We use it to investigate the primary in vitro model scenarios currently studied experimentally: motion in vertical confinement, confinement in microchannels, as well as motion on fibers and on imposed modulations of surface topography. We find that confinement, substrate curvature and topography modulate the cell's speed, shape and actin organization and can induce changes in the direction of motion along axes defined by the constraints. Our model serves as a benchmark to systematically explore lamellipodium-based motility and its interaction with the environment.