Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Book Chapter

Bacteria and marine biogeochemistry


Jørgensen,  Bo Barker
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Jørgensen, B. B. (2000). Bacteria and marine biogeochemistry. In Marine Geochemistry.

Cite as: https://hdl.handle.net/21.11116/0000-0004-64FC-0
Geochemical cycles on Earth follow the basic laws of thermodynamics and proceed towards a state of maximal entropy and the most stable mineral phases. Redox reactions between oxidants such as atmospheric oxygen or manganese oxide and reductants such as ammonium or sulfide may proceed by chemical reaction, but they are most often accelerated by many orders of magnitude through enzymatic catalysis in living organisms. Throughout Earth’s history, prokaryotic physiology has evolved towards a versatile use of chemical energy available from this multitude of potential reactions. Biology, thereby, to a large extent regulates the rate at which the elements are cycled in the environment and affects where and in which chemical form the elements accumulate. By coupling very specifically certain reactions through their energy metabolism, the organisms also direct the pathways of transformation and the ways in which the element cycles are coupled.