English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Decay of the distance autocorrelation and Lyapunov exponents

MPS-Authors
/persons/resource/persons184345

Beims,  Marcus W.
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

1903.08202.pdf
(Preprint), 682KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Mendes, C. F. O., da Silva, R. M., & Beims, M. W. (2019). Decay of the distance autocorrelation and Lyapunov exponents. Physical Review E, 99(6): 062206. doi:10.1103/PhysRevE.99.062206.


Cite as: http://hdl.handle.net/21.11116/0000-0004-6F06-A
Abstract
This work presents numerical evidence that for discrete dynamical systems with one positive Lyapunov exponent the decay of the distance autocorrelation is always related to the Lyapunov exponent. Distinct decay laws for the distance autocorrelation are observed for different systems, namely, exponential decays for the quadratic map, logarithmic for the Henon map, and power-law for the conservative standard map. In all these cases the decay exponent is close to the positive Lyapunov exponent. For hyperchaotic conservative systems the power-law decay of the distance autocorrelation is not directly related to any Lyapunov exponent.