Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy

MPG-Autoren
/persons/resource/persons196491

Li,  Z.
Department of Chemistry and The PULSE Institute, Stanford University;
SLAC Linear Accelerator Laboratory, Menlo Park;
Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, Peking University;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

s41467-019-10789-7.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

41467_2019_10789_MOESM1_ESM.pdf
(Ergänzendes Material), 5MB

41467_2019_10789_MOESM2_ESM.pdf
(Ergänzendes Material), 462KB

Zitation

Timmers, H., Zhu, X., Li, Z., Kobayashi, Y., Sabbar, M., Hollstein, M., et al. (2019). Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy. Nature Communications, 10: 3133. doi:10.1038/s41467-019-10789-7.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-6926-C
Zusammenfassung
Attosecond probing of core-level electronic transitions provides a sensitive tool for studying valence molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy to follow the valence dynamics of strong-field initiated processes in methyl bromide. By probing the 3d core-to-valence transition, we resolve the strong field excitation and ensuing fragmentation of the neutral σ* excited states of methyl bromide. The results provide a clear signature of the non-adiabatic passage of the excited state wavepacket through a conical intersection. We additionally observe competing, strong field initiated processes arising in both the ground state and ionized molecule corresponding to vibrational and spin-orbit motion, respectively. The demonstrated ability to resolve simultaneous dynamics with few-femtosecond resolution presents a clear path forward in the implementation of attosecond XUV spectroscopy as a general tool for probing competing and complex molecular phenomena with unmatched temporal resolution.