Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Asymptotic Correlations in Gapped and Critical Topological Phases of 1D Quantum Systems


Verresen,  Ruben
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 1019KB

Supplementary Material (public)
There is no public supplementary material available

Jones, N. G., & Verresen, R. (2019). Asymptotic Correlations in Gapped and Critical Topological Phases of 1D Quantum Systems. Journal of Statistical Physics, 175(6), 1164-1213. doi:10.1007/s10955-019-02257-9.

Cite as: https://hdl.handle.net/21.11116/0000-0004-7320-6
Topological phases protected by symmetry can occur in gapped andsurprisinglyin critical systems. We consider non-interacting fermions in one dimension with spinless time-reversal symmetry. It is known that the phases are classified by a topological invariant and a central charge c. We investigate the correlations of string operators, giving insight into the interplay between topology and criticality. In the gapped phases, these non-local string order parameters allow us to extract . Remarkably, ratios of correlation lengths are universal. In the critical phases, the scaling dimensions of these operators serve as an order parameter, encoding and c. We derive exact asymptotics of these correlation functions using Toeplitz determinant theory. We include physical discussion, e.g., relating lattice operators to the conformal field theory. Moreover, we discuss the dual spin chains. Using the aforementioned universality, the topological invariant of the spin chain can be obtained from correlations of local observables.