User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Functional relations for elliptic polylogarithms


Brödel,  Johannes
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available

Brödel, J., & Kaderli, A. (2020). Functional relations for elliptic polylogarithms. Journal of Physics A: Mathematical and Theoretical, 53(24): 245201. doi:10.1088/1751-8121/ab81d7.

Cite as: http://hdl.handle.net/21.11116/0000-0004-70BB-B
Numerous examples of functional relations for multiple polylogarithms are known. For elliptic polylogarithms, however, tools for the exploration of functional relations are available, but only very few relations are identified. Starting from an approach of Zagier and Gangl, which in turn is based on considerations about an elliptic version of the Bloch group, we explore functional relations between elliptic polylogarithms and link them to the relations which can be derived using the elliptic symbol formalism. The elliptic symbol formalism in turn allows for an alternative proof of the validity of the elliptic Bloch relation. While the five-term identity is the prime example of a functional identity for multiple polylogarithms and implies many dilogarithm identities, the situation in the elliptic setup is more involved: there is no simple elliptic analogue, but rather a whole class of elliptic identities.