Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

SESCA: Predicting circular dichroism spectra from protein molecular structures.

MPG-Autoren
/persons/resource/persons15564

Nagy,  G.
Department of Theoretical and Computational Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons213877

Igaev,  M.
Department of Theoretical and Computational Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

(Kein Zugriff möglich)

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nagy, G., Igaev, M., Jones, N. C., Hoffmann, S. V., & Grubmüller, H. (2019). SESCA: Predicting circular dichroism spectra from protein molecular structures. Journal of Chemical Theory and Computation, (in press). doi:10.1021/acs.jctc.9b00203.


Zusammenfassung
Circular dichroism spectroscopy is a highly sensitive, but low-resolution technique to study the structure of proteins. Combined with molecular modelling or other complementary techniques, CD spectroscopy can provide essential information at higher resolution. To this end, we introduce a new computational method to calculate the electronic circular dichroism spectra of proteins from a structural model or ensemble using the average secondary structure composition and a pre-calculated set of basis spectra. The method is designed for model validation to estimate the error of a given protein structural model based on the measured CD spectrum. We compared the predictive power of our method to existing algorithms -- namely DichroCalc and PDB2CD -- and found that it predicts CD spectra more accurately. Our results indicate that the derived basis sets are robust to both experimental errors in the reference spectra and the choice of the secondary structure classification algorithm. For over 80% of the globular reference proteins, our basis sets accurately predict the experimental spectrum solely from their secondary structure composition. For the remaining 20%, correcting for intensity normalization considerably improves the prediction power. Additionally, we show that the predictions for short peptides and an example complex of intrinsically disordered proteins strongly benefit from accounting for side-chain contributions and structural flexibility.