English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantification of membrane receptor complexes with single-molecule localization microscopy

MPS-Authors
/persons/resource/persons15259

Hummer,  Gerhard       
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Böger, C., Baldering, T. N., Krüger, C. L., Harwardt, M.-L.-I.-E., Mertinkus, K. R., Schröder, M. S., et al. (2019). Quantification of membrane receptor complexes with single-molecule localization microscopy. Proceedings of SPIE, 10884: 108840T. doi:10.1117/12.2522348.


Cite as: https://hdl.handle.net/21.11116/0000-0004-79AD-2
Abstract
Knowledge of assembly, subunit architecture and dynamics of membrane proteins in a cellular context is essential to infer their biological function. Optical super-resolution techniques provide the necessary spatial resolution to study these properties of membrane protein complexes in the context of their cellular environment. Single-molecule localization microscopy (SMLM) is particularly well suited, as next to high-resolution images, it provides quantitative information on the detection of single emitters. A challenge for current super-resolution methods is to resolve individual protein subunits within a densely packed protein cluster. For this purpose, we developed quantitative SMLM (qSMLM), which reports on molecular numbers by analyzing the kinetics of single emitter blinking. Next to theoretical models for various photophysical schemes, we demonstrate this method for a selection of fluorescent proteins and synthetic dyes and a selection of membrane proteins. We next applied this tool to toll-like receptor 4 (TLR4), and found a ligand-specific formation of monomeric or dimeric receptors. Next to fluorescent proteins, DNA-PAINT offers a novel and flexible approach for quantitative super-resolution microscopy. We demonstrate DNA-PAINT imaging of structurally defined DNA origami structures and robust quantification of target sites, as well as of membrane receptors. Molecular quantification, together with experiments following single receptor mobilities in live cells, will enlighten molecular mechanisms of receptor activation.