Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Predicting the Affinity of Peptides to Major Histocompatibility Complex Class II by Scoring Molecular Dynamics Simulations

MPG-Autoren
/persons/resource/persons145578

Cossio,  Pilar       
Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellin, Colombia;
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ochoa, R., Laio, A., & Cossio, P. (2019). Predicting the Affinity of Peptides to Major Histocompatibility Complex Class II by Scoring Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 59(8), 3464-3473. doi:10.1021/acs.jcim.9b00403.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-7A9A-6
Zusammenfassung
Predicting the binding affinity of peptides able to interact with major histocompatibility complex (MHC) molecules is a priority for researchers working in the identification of novel vaccines candidates. Most available approaches are based on the analysis of the sequence of peptides of known experimental affinity. However, for MHC class II receptors, these approaches are not very accurate, due to the intrinsic flexibility of the complex. To overcome these limitations, we propose to estimate the binding affinity of peptides bound to an MHC class II by averaging the score of the configurations from finite-temperature molecular dynamics simulations. The score is estimated for 18 different scoring functions, and we explored the optimal manner for combining them. To test the predictions, we considered eight peptides of known binding affinity. We found that six scoring functions correlate with the experimental ranking of the peptides significantly better than the others. We then assessed a set of techniques for combining the scoring functions by linear regression and logistic regression. We obtained a maximum accuracy of 82% for the predicted sign of the binding affinity using a logistic regression with optimized weights. These results are potentially useful to improve the reliability of in silico protocols to design high-affinity binding peptides for MHC class II receptors.