Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Oscillatory EEG dynamics underlying automatic chunking during sentence processing


Bonhage,  Corinna E.
Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Max Planck Society;
Max Planck Institute for Human Cognitive and Brain Sciences, Neuropsychology Department ;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Bonhage, C. E., Meyer, L., Gruber, T., Friederici, A. D., & Mueller, J. L. (2017). Oscillatory EEG dynamics underlying automatic chunking during sentence processing. NeuroImage, 152, 647-657. doi:10.1016/j.neuroimage.2017.03.018.

Cite as: https://hdl.handle.net/21.11116/0000-0004-7B64-2
Sentences are easier to remember than random word sequences, likely because linguistic regularities facilitate chunking of words into meaningful groups. The present electroencephalography study investigated the neural oscillations modulated by this so-called sentence superiority effect during the encoding and maintenance of sentence fragments versus word lists. We hypothesized a chunking-related modulation of neural processing during the encoding and retention of sentences (i.e., sentence fragments) as compared to word lists. Time–frequency analysis revealed a two-fold oscillatory pattern for the memorization of sentences: Sentence encoding was accompanied by higher delta amplitude (4 Hz), originating both from regions processing syntax as well as semantics (bilateral superior/middle temporal regions and fusiform gyrus). Subsequent sentence retention was reflected in decreased theta (6 Hz) and beta/gamma (27–32 Hz) amplitude instead. Notably, whether participants simply read or properly memorized the sentences did not impact chunking-related activity during encoding. Therefore, we argue that the sentence superiority effect is grounded in highly automatized language processing mechanisms, which generate meaningful memory chunks irrespective of task demands.