Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Deficiency Zero Theorem for a Class of Power-Law Kinetic Systems with Non-Reactant-Determined Interactions

MPG-Autoren
/persons/resource/persons187915

Mendoza,  Eduardo R.
Oesterhelt, Dieter / Membrane Biochemistry, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fortun, N. T., Mendoza, E. R., Razon, L. F., & Lao, A. R. (2019). A Deficiency Zero Theorem for a Class of Power-Law Kinetic Systems with Non-Reactant-Determined Interactions. Match-Communications in Mathematical and in Computer Chemistry, 81(3), 621-638.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-8C68-A
Zusammenfassung
The Deficiency Zero Theorem (DZT) provides definitive results about the dynamical behavior of chemical reaction networks with deficiency zero. Thus far, the available DZTs only apply to classes of power-law kinetic systems with reactant determined interactions (i.e., the kinetic order vectors of the branching reactions of a reactant complex are identical). In this paper, we present the first DZT valid for a class of power-law systems with non-reactant-determined interactions (i.e., there are reactant complexes whose branching reactions have different kinetic order vectors). This class of power-law systems is characterized here by a decomposition into subnetworks with specific properties of their stoichiometric and reactant subspaces, as well as their kinetics. We illustrate our results to a power-law system of a pre-industrial carbon cycle model, from which we abstracted the properties of the above-mentioned decomposition. Specifically, our DZT is applied to a subnetwork of the carbon cycle system to describe the subnetwork's steady states. It is also shown that the qualitative dynamical properties of the subnetwork may be lifted to the entire network of pre-industrial carbon cycle.