Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Turbulent heat flux reconstruction in the north Pacific from 1921 to 2014


Fraedrich,  Klaus F.
MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available

Song, B., Zhi, X., Pan, M., Hou, M., He, C., & Fraedrich, K. F. (2019). Turbulent heat flux reconstruction in the north Pacific from 1921 to 2014. Journal of the Meteorological Society of Japan, 97, 893-911. doi:10.2151/jmsj.2019-050.

Cite as: https://hdl.handle.net/21.11116/0000-0004-81C5-B
Turbulent heat flux is the main passageway for air–sea interactions. However, owing to a lack of long-term observations of turbulent heat flux, it is difficult to investigate the mechanisms of coupled ocean–atmosphere variabilities, such as the Pacific Decadal Oscillation. In this study, we reconstructed the long-term turbulent heat flux in the North Pacific from 1921 to 2014 on the basis of observations in the International Comprehensive Ocean-Atmosphere Data Set–International Maritime Meteorological Archive. Sea surface temperature, air temperature, wind, and humidity were used to reconstruct the turbulent heat flux by using the Coupled Ocean– Atmosphere Response Experiment 3.5 algorithm. The modified Fisher–Tippett distribution was employed to calculate the turbulent heat flux at each grid square, and missing values were further derived on the basis of data interpolating empirical orthogonal functions. The reconstructed turbulent heat flux was shown to be in accordance with the commonly used short-term heat flux datasets. This reconstruction is further examined by comparing it with long-term data from the European Center for Medium-Range Weather Forecasts twentieth-century reanalysis (ERA-20C) and the Twentieth Century Reanalysis (20CR) dataset from the National Oceanic and Atmospheric Administration. This reconstruction displays good agreement with ERA-20C both in spatial and temporal scales but shows some differences from 20CR. These examinations show that the reconstructed turbulent heat flux can reproduce well the main features of air–sea interaction in the North Pacific, which can be used in the studies of air–sea interaction in the North Pacific on multidecadal timescales. © The Author(s) 2019.