日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis

MPS-Authors
/persons/resource/persons210725

Rosselló-Mora,  Ramon
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Sikorski, J., Rosselló-Mora, R., & Lorenz, M. (1999). Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. Systematic and Applied Microbiology, 22(3), 393-402. doi:10.1016/S0723-2020(99)80048-4.


引用: https://hdl.handle.net/21.11116/0000-0005-47EB-3
要旨
Molecular fingerprinting procedures including random amplified polymorphic DNA-PCR (RAPD), repetitive extragenic palindromic PCR (rep-PCR) with REP, ERIC, and BOX primers and multilocus enzyme electrophoresis (MLEE) were used for genotypic characterization of 16 P. stutzeri strains originally isolated from marine, waste water, clinical and soil samples. A distinct genotype of each strain and overall great genotypic diversity were found within P. stutzeri. Cluster analysis (UPGMA) of the electrophoretic patterns of all PCR-based methods used resulted in concordant grouping of 8 strains. With the other strains conflicting clustering was noticed. The variability of clustering in PCR-based analyses suggested the occurrence of chromosomal rearrangements. When RAPD-, rep-PCR and MLEE fingerprints were used in a cluster analysis of combined electrophoretic patterns, the P. stutzeri strains could be differentiated into seven distinct genotypic groups. These results supported the subdivision of the species in several genomovars and reproduced, with higher resolution, the strain grouping after 16 rRNA phylogenetic reconstruction. The combined use of several fingerprint-based genotypic analyses results in higher resolutive strain clustering by UPGMA than each of the single ones analyzed separately. Additionally, this combination of individual typings proved to be reliable of the determination of the great genotypic diversity and relationships among the P. stutzeri strains.