Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pathways of carbon oxidation in continental margin sediments off central Chile

MPG-Autoren
/persons/resource/persons256883

Thamdrup,  B.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons256935

Canfield,  Donald E.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Thamdrup_1996.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thamdrup, B., & Canfield, D. E. (1996). Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41(8), 1629-1650. doi:10.4319/lo.1996.41.8.1629.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-BBBA-8
Zusammenfassung
Rates and oxidative pathways of organic carbon mineralization were determined in sediments at six stations on the shelf and slope off Concepcion Bay at 36.5 degrees S. The depth distribution of C oxidation rates was determined to 10 cm from accumulation of dissolved inorganic C in 1-5-d incubations. Pathways of C oxidation were inferred from the depth distributions of the potential oxidants (O-2, NO3-, and oxides of Mn and Fe) and from directly determined rates of SO42- reduction. The study area is characterized by intense seasonal upwelling, and during sampling in late summer the bottom water over the shelf was rich in NO3- and depleted of O-2. Sediments at the four shelf stations were covered by mats of filamentous bacteria of the genera Thioploca and Beggiatoa. Carbon oxidation rates at these sites were extremely high near the sediment surface (> 3 mu mol cm(-3) d(-1)) and decreased exponentially with depth. The process was entirely coupled to SO42- reduction. At the two slope stations where bottom-water O-2 was > 100 mu M, C oxidation rates were 10-fold lower and varied less with depth; C oxidation coupled to the reduction of O-2, NO3-, and Mn oxides combined to yield an estimated 15% of the total C oxidation between 0 and 10 cm. Carbon oxidation through Fe reduction contributed a further 12-29% of the depth-integrated rate, while the remainder of C oxidation was through SO42- reduction. The depth distribution of Fe reduction agreed well with the distribution of poorly crystalline Fe oxides, and as this pool decreased with depth, the importance of SO42- reduction increased. The results point to a general importance of Fe reduction in C oxidation in continental margin sediments. At the shelf stations, Fe reduction was mainly coupled to oxidation of reduced S. These sediments were generally H2S-free despite high SO42- reduction rates, and precipitation of Fe sulfides dominated H2S scavenging during the incubations. A large NO3- pool was associated with the Thioploca, and the shelf sediments were thus enriched in NO3- relative to the bottom water, with maximum concentrations of 3 mu mol cm(-3). The NO3- was consumed during our sediment incubations, but no effects on either C or S cycles could be discerned.