English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments

MPS-Authors
/persons/resource/persons210489

Jørgensen,  Bo Barker
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Jorgensen_1996.pdf
(Publisher version), 284KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Isaksen, M., & Jørgensen, B. B. (1996). Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Applied and Environmental Microbiology, 62(2), 408-414.


Cite as: https://hdl.handle.net/21.11116/0000-0004-B48B-4
Abstract
The potential for sulfate reduction at low temperatures was examined in two different cold marine sediments, Mariager Fjord (Denmark), which is permanently cold (3 to 6 degrees C) but surrounded by seasonally warmer environments, and the Weddell Sea (Antarctica), which is permanently below 0 degrees C. The rates of sulfate reduction were measured by the (SO42-)-S-35 tracer technique at different experimental temperatures in sediment slurries, In sediment slurries from Mariager Fjord, sulfate reduction showed a mesophilic temperature response which was comparable to that of other temperate environments, In sediment slurries from Antarctica, the metabolic activity of psychrotrophic bacteria was observed with a respiration optimum at 18 to 19 degrees C during short-term incubations, However, over a 1-week incubation, the highest respiration rate was observed at 12.5 degrees C. Growth of the bacterial population at the optimal growth temperature could be an explanation for the low temperature optimum of the measured sulfate reduction, The potential for sulfate reduction was highest at temperatures well above the in situ temperature in all experiments, The results frorn sediment incubations were compared with those obtained from pure cultures of sulfate-reducing bacteria by using the psychrotrophic strain Itk10 and the mesophilic strain ak30. The psychrotrophic strain reduced sulfate optimally at 28 degrees C in short-term incubations, even though it could not grow at temperatures above 24 degrees C. Furthermore, this strain showed its highest growth yield between 0 and 12 degrees C. In contrast, the mesophilic strain ak30 respired and grew optimally and showed its highest growth yield at 30 to 35 degrees C.