English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hyperbolic isometries and boundaries of systolic complexes

MPS-Authors
/persons/resource/persons240643

Prytuła,  Tomasz       
Max Planck Institute for Mathematics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

arXiv:1705.01062.pdf
(Preprint), 349KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Prytuła, T. (2019). Hyperbolic isometries and boundaries of systolic complexes. Journal of the London Mathematical Society, 99(2), 583-608. doi:10.1112/jlms.12184.


Cite as: https://hdl.handle.net/21.11116/0000-0004-8360-B
Abstract
Given a group $G$ acting geometrically on a systolic complex $X$ and a hyperbolic isometry $h \in G$, we study the associated action of $h$ on the systolic boundary $\partial X$. We show that $h$ has a canonical pair of fixed points on the boundary and that it acts trivially on the boundary if and only if it is virtually central. The key tool that we use to study the action of $h$ on $\partial X$ is the notion of a $K$-displacement set of $h$, which generalises the classical minimal displacement set of $h$. We also prove that systolic complexes equipped with a geometric action of a group are almost extendable.