English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unequal Mass Binary Neutron Star Simulations with Neutrino Transport: Ejecta and Neutrino Emission

MPS-Authors
/persons/resource/persons213835

Pfeiffer,  Harald P.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

1908.00655.pdf
(Preprint), 6MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Vincent, T., Foucart, F., Duez, M. D., Haas, R., Kidder, L. E., Pfeiffer, H. P., et al. (2020). Unequal Mass Binary Neutron Star Simulations with Neutrino Transport: Ejecta and Neutrino Emission. Physical Review D, 101: 044053. doi:10.1103/PhysRevD.101.044053.


Cite as: http://hdl.handle.net/21.11116/0000-0004-84AD-4
Abstract
We present twelve new simulations of unequal mass neutron star mergers. The simulations were preformed with the SpEC code, and utilize nuclear-theory based equations of state and a two-moment gray neutrino transport scheme with an improved energy estimate based on evolving the number density. We model the neutron stars with the SFHo, LS220 and DD2 equations of state (EOS) and we study the neutrino and matter emission of all twelve models to search for robust trends between binary parameters and emission characteristics. We find that the total mass of the dynamical ejecta exceeds $0.01M_\odot$ only for SFHo with weak dependence on the mass-ratio across all models. We find that the ejecta have a broad electron fraction ($Y_e$) distribution ($\approx 0.06-0.48$), with mean $0.2$. $Y_e$ increases with neutrino irradiation over time, but decreases with increasing binary asymmetry. We also find that the models have ejecta with a broad asymptotic velocity distribution ($\approx 0.05-0.7c$). The average velocity lies in the range $0.2c - 0.3c$ and decreases with binary asymmetry. Furthermore, we find that disk mass increases with binary asymmetry and stiffness of the EOS. The $Y_e$ of the disk increases with softness of the EOS. The strongest neutrino emission occurs for the models with soft EOS. For (anti) electron neutrinos we find no significant dependence of the magnitude or angular distribution or neutrino luminosity with mass-ratio. The heavier neutrino species have a luminosity dependence on mass-ratio but an angular distribution which does not change with mass-ratio.