Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity


Meierhofer,  David
Mass Spectrometry (Head: David Meierhofer), Scientific Service (Head: Christoph Krukenkamp), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Guo, J., Bertalan, G., Meierhofer, D., Klein, C., Schreyer, S., Steiner, B., et al. (2019). Brain maturation is associated with increasing tissue stiffness and decreasing tissue fluidity. Acta Biomaterialia, pii: S1742-7061(19)30592-6. doi:10.1016/j.actbio.2019.08.036.

Cite as: https://hdl.handle.net/21.11116/0000-0004-8D07-6
Biomechanical cues guide proliferation, growth and maturation of neurons. Yet the molecules that shape the brain's biomechanical properties are unidentified and the relationship between neural development and viscoelasticity of brain tissue remains elusive. Here we combined novel in-vivo tomoelastography and ex-vivo proteomics to investigate whether viscoelasticity of the mouse brain correlates with protein alterations within the critical phase of brain maturation. For the first time, high-resolution atlases of viscoelasticity of the mouse brain were generated, revealing that (i)brain stiffness increased alongside progressive accumulation of microtubular structures, myelination, cytoskeleton linkage and cell-matrix attachment, and that (ii) viscosity-related tissue fluidity decreased alongside downregulated actin crosslinking and axonal organization. Taken together, our results show that brain maturation is associated with a shift of brain mechanical properties towards a more solid-rigid behavior consistent with reduced tissue fluidity. This shift appears to be driven by several molecular processes associated with myelination, cytoskeletal crosslinking and axonal organization.