English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Partial optomechanical refrigeration via multi-mode cold-damping feedback

MPS-Authors
/persons/resource/persons223674

Sommer,  Christian
Genes Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons216190

Genes,  Claudiu
Genes Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sommer, C., & Genes, C. (2019). Partial optomechanical refrigeration via multi-mode cold-damping feedback. Physical Review Letters, 123: 203605. doi:10.1103/PhysRevLett.123.203605.


Cite as: https://hdl.handle.net/21.11116/0000-0004-A976-9
Abstract
We provide a fully analytical treatment for the partial refrigeration of the thermal motion of a quantum mechanical resonator under the action of feedback. As opposed to standard cavity optomechanics where the aim is to isolate and cool a single mechanical mode, the aim here is to extract the thermal energy from many vibrational modes within a large frequency bandwidth. We consider a standard cold-damping technique, where homodyne readout of the cavity output field is fed into a feedback loop that provides a cooling action directly applied on the mechanical resonator. Analytical and numerical results predict that low final occupancies are achievable independent of the number of modes addressed by the feedback, as long as the cooling rate is smaller than the intermode frequency separation. For resonators exhibiting a few nearly degenerate pairs of modes, cooling is less efficient and a weak dependence on the number of modes is obtained. These scalings hint toward the design of frequency-resolved mechanical resonators, where efficient refrigeration is possible via simultaneous cold-damping feedback.