English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structure and Reactivity of 1,8-Bis(naphthalenediyl)dipnictanes

MPS-Authors
/persons/resource/persons125031

Auer,  Alexander A.
Research Group Auer, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dzialkowski, K., Gehlhaar, A., Wölper, C., Auer, A. A., & Schulz, S. (2019). Structure and Reactivity of 1,8-Bis(naphthalenediyl)dipnictanes. Organometallics, 38(15), 2927-2942. doi:10.1021/acs.organomet.9b00269.


Cite as: https://hdl.handle.net/21.11116/0000-0004-96F7-C
Abstract
Syntheses and solid-state structures of diarsane Naph2As2 (Naph = 1,8-naphthalenediyl, 1) and (Naph)5Sb4Cl2 3 are reported and the σ-donor capacity of Naph2E2 (E = As 1, Sb 2) was studied in reactions with (coe)Cr(CO)5 (coe = Z-cyclooctene), yielding [Naph2As2][Cr(CO)5]2 (4) and [Naph2E2][Cr(CO)5] (E = As 5, Sb 6). In contrast, reactions of 1 and 3 with Me2SAuCl proceed with oxidation and formation of elemental gold as well as Naph2(AsCl)2 (7) and [NaphSbCl2]2 8. All complexes were characterized by elemental analyses, heteronuclear (1H, 13C) NMR and FT-IR spectroscopy, as well as single crystal X-ray diffraction. Intermolecular E···π interactions (E = As, Sb), which were observed in 7 and 8, were quantified by use of density functional theory and local coupled cluster electronic structure theory calculations. These allow to assess the nature and relative importance of covalent and noncovalent interactions and illustrate how dispersion interactions change with the electronic structure of the compounds.