English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information

MPS-Authors
/persons/resource/persons230286

Antonelli,  Andrea
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons226316

van de Meent,  Maarten
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons127862

Buonanno,  Alessandra
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons144501

Steinhoff,  Jan
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons192129

Vines,  Justin
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

1907.11597.pdf
(Preprint), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Antonelli, A., van de Meent, M., Buonanno, A., Steinhoff, J., & Vines, J. (2020). Quasicircular inspirals and plunges from nonspinning effective-one-body Hamiltonians with gravitational self-force information. Physical Review D, 101(2): 024024. doi:10.1103/PhysRevD.101.024024.


Cite as: http://hdl.handle.net/21.11116/0000-0004-96E7-E
Abstract
The self-force program aims at accurately modeling relativistic two-body systems with a small mass ratio (SMR). In the context of the effective-one-body (EOB) framework, current results from this program can be used to determine the effective metric components at linear order in the mass ratio, resumming post-Newtonian (PN) dynamics around the test-particle limit in the process. It was shown in [Akcay et al., Phys. Rev. D 86 (2012)] that, in the original (standard) EOB gauge, the SMR contribution to the metric component $g^\text{eff}_{tt}$ exhibits a coordinate singularity at the light-ring (LR) radius. In this paper, we adopt a different gauge for the EOB dynamics and obtain a Hamiltonian that is free of poles at the LR, with complete circular-orbit information at linear order in the mass ratio and non-circular-orbit and higher-order-in-mass-ratio terms up to 3PN order. We confirm the absence of the LR-divergence in such an EOB Hamiltonian via plunging trajectories through the LR radius. Moreover, we compare the binding energies and inspiral waveforms of EOB models with SMR, PN and mixed SMR-3PN information on a quasi-circular inspiral against numerical-relativity predictions. We find good agreement between NR simulations and EOB models with SMR-3PN information for both equal and unequal mass ratios. In particular, when compared to EOB inspiral waveforms with only 3PN information, EOB Hamiltonians with SMR-3PN information improves the modeling of binary systems with small mass ratios $q \lesssim 1/3$, with a dephasing accumulated in $\sim$30 gravitational-wave (GW) cycles being of the order of few hundredths of a radian up to 4 GW cycles before merger.