English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-pressure synthesis of A-site ordered perovskite CaMn3(Fe3Mn)O12 and sequential long-range antiferromagnetic ordering and spin glass transition

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Guo, J., Ye, X., Liu, Z., Wang, W., Qin, S., Zhou, B., et al. (2019). High-pressure synthesis of A-site ordered perovskite CaMn3(Fe3Mn)O12 and sequential long-range antiferromagnetic ordering and spin glass transition. Journal of Solid State Chemistry, 278: 120921, pp. 1-5. doi:10.1016/j.jssc.2019.120921.


Cite as: https://hdl.handle.net/21.11116/0000-0004-9837-3
Abstract
An AA’3B4O12-type perovskite oxide CaMn3(Fe3Mn)O12 was synthesized at 8 GPa and 1473 K. X-ray diffraction shows a cubic crystal structure with space group Im-3. The charge states are verified by soft x-ray absorption spectroscopy to be CaMn3+ 3(Fe3+ 3Mn4+)O12, where the Ca2+ and Mn3+ are 1:3 ordered respectively at A and A′ sites, while the Mn4+ and Fe3+ are disorderly distributed at B site. The spin interaction of A′-site Mn3+ ions causes a long-range antiferromagnetic phase transition at about 39 K. Subsequently, a spin glass transition is found to occur around 14 K due to the randomly distributed Fe3+ and Mn4+ at B site. Moreover, the spin glass behavior follows a dynamic scaling power law. The temperature dependent resistivity can be well fitted by a 3D Mott variable-range hopping model, indicating the insulating nature of CaMn3(Fe3Mn)O12 due to the strong electron correlation effects. © 2019 Elsevier Inc.