English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dimensional interpolation and the Selberg integral

MPS-Authors
/persons/resource/persons236497

Zagier,  D.
Max Planck Institute for Mathematics, Max Planck Society;

Fulltext (public)

arXiv:1906.00071.pdf
(Preprint), 148KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Golyshev, V., van Straten, D., & Zagier, D. (2019). Dimensional interpolation and the Selberg integral. Journal of Geometry and Physics, 145: 103455. doi:10.1016/j.geomphys.2019.06.006.


Cite as: http://hdl.handle.net/21.11116/0000-0004-9D01-A
Abstract
We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a Grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non-integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.