English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior

MPS-Authors
/persons/resource/persons20014

Steinbeis,  Nikolaus
Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons22828

Bernhardt,  Boris C.
Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20000

Singer,  Tania
Department Social Neuroscience, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Laboratory for Social and Neural Systems Research, University of Zurich, Zurich CH-8006, Switzerland;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Steinbeis, N., Bernhardt, B. C., & Singer, T. (2012). Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior. Neuron, 73(5), 1040-1051. doi:10.1016/j.neuron.2011.12.027.


Cite as: https://hdl.handle.net/21.11116/0000-0004-A1CD-F
Abstract
Human social exchange is often characterized by conflicts of interest requiring strategic behavior for their resolution. To investigate the development of the cognitive and neural mechanisms underlying strategic behavior, we studied children's decisions while they played two types of economic exchange games with differing demands of strategic behavior. We show an increase of strategic behavior with age, which could not be explained by age-related changes in social preferences but instead by developmental differences in impulsivity and associated brain functions of the left dorsolateral prefrontal cortex (DLPFC). Furthermore, observed differences in cortical thickness of lDLPFC were predictive of differences in impulsivity and strategic behavior irrespective of age. We conclude that egoistic behavior in younger children is not caused by a lack of understanding right or wrong, but by the inability to implement behavioral control when tempted to act selfishly; a function relying on brain regions maturing only late in ontogeny.