English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling

MPS-Authors
/persons/resource/persons29234

Hammerbacher,  Almuth
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons197365

Kandasamy,  Dineshkumar
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3884

Gershenzon,  Jonathan
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
Citation

Huang, J., Kautz, M., Trowbridge, A. M., Hammerbacher, A., Raffa, K. F., Adams, H. D., et al. (in press). Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist. doi:10.1111/nph.16173.


Cite as: http://hdl.handle.net/21.11116/0000-0004-A4C1-8
Abstract
Drought has promoted large‐scale, insect‐induced tree mortality in recent years, with severe consequences for ecosystem function, atmospheric processes, sustainable resources and global biogeochemical cycles. However, the physiological linkages among drought, tree defences, and insect outbreaks are still uncertain, hindering our ability to accurately predict tree mortality under on‐going climate change. Here we propose an interdisciplinary research agenda for addressing these crucial knowledge gaps. Our framework includes field manipulations, laboratory experiments, and modelling of insect and vegetation dynamics, and focuses on how drought affects interactions between conifer trees and bark beetles. We build upon existing theory and examine several key assumptions: 1) there is a trade‐off in tree carbon investment between primary and secondary metabolites (e.g. growth vs. defence); 2) secondary metabolites are one of the main component of tree defence against bark beetles and associated microbes; and 3) implementing conifer‐bark beetle interactions in current models improves predictions of forest disturbance in a changing climate. Our framework provides guidance for addressing a major shortcoming in current implementations of large‐scale vegetation models, the under‐representation of insect‐induced tree mortality.