English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits

MPS-Authors
/persons/resource/persons182904

Malavolti,  L.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max-Planck Institute for Solid State Research;

/persons/resource/persons133858

Loth,  S.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Max-Planck Institute for Solid State Research;
Institute for Functional Matter and Quantum Technologies, University of Stuttgart;

External Resource
Fulltext (public)

c9nh00023b.pdf
(Publisher version), 4MB

Supplementary Material (public)

c9nh00023b1.pdf
(Supplementary material), 720KB

Citation

Cimatti, I., Bondì, L., Serrano, G., Malavolti, L., Cortigiani, B., Velez-Fort, E., et al. (2019). Vanadyl phthalocyanines on graphene/SiC(0001): toward a hybrid architecture for molecular spin qubits. Nanoscale Horizons, 4(5), 1202-1210. doi:10.1039/c9nh00023b.


Cite as: http://hdl.handle.net/21.11116/0000-0004-A662-2
Abstract
Vanadyl phthalocyanine (VOPc) contains a highly coherent spin S = ½, which is of interest for applications in quantum information. Preservation of long coherence times upon deposition on conductive materials is crucial for use of single-spin in devices. Here, we report a detailed investigation of the structural, electronic and magnetic properties of a hybrid architecture constituted by a monolayer film of VOPc molecules deposited on graphene/SiC(0001). Graphene (Gr) is a two-dimensional conductor with exceptional chemical stability, a property which we exploited here to preserve the spin of VOPc. Low temperature-scanning tunneling microscopy supported by density functional theory (DFT) simulations revealed that VOPc molecules were adsorbed intact on the Gr/SiC(0001) surface in a planar geometry assuming a unique configuration in which the vanadyl group is projected out toward the vacuum, different to that found commonly on other conductive surfaces. Furthermore, X-ray photoelectron spectroscopy and UV-photoelectron spectroscopy (flanked theoretically by DFT) showed that VOPc interact weakly with the Gr/SiC(0001) substrate to preserve its electronic configuration with the unpaired electron located on the V ion. These findings were confirmed by X-ray magnetic circular dichroism, revealing that the S = ½ character of the VOPc assembly on Gr/SiC(0001) was preserved, in agreement with the theoretical prediction. Hence, molecules could be adsorbed and used as qubits on substrates of technological importance, such as graphene. This new hybrid architecture could be employed for local investigation of static and dynamic spin properties and as molecular qubits for spintronic applications.