English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions

MPS-Authors
/persons/resource/persons216804

Bistoni,  Giovanni
Research Group Bistoni, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bistoni, G. (2020). Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(3): e1442. doi:10.1002/wcms.1442.


Cite as: https://hdl.handle.net/21.11116/0000-0006-3D8A-B
Abstract
Noncovalent interactions (NCIs) play a major role in essentially all fields of chemical research. Energy decomposition analysis (EDA) schemes provide in‐depth insights into their nature by decomposing interaction energies into additive contributions, such as electrostatics, polarization, and London dispersion. Although modern local variants of the “gold standard” coupled‐cluster singles and doubles method plus perturbative triples (CCSD(T)) have made it possible to accurately quantify NCIs for relatively large systems, extracting chemically meaningful energy terms from such high level electronic structure calculations has been a long lasting challenge in computational chemistry. This review describes basic principles, interpretative aspects and applications of recently developed coupled cluster‐based EDAs for the analysis of NCIs. The focus is on computationally efficient methods for systems with a few hundred atoms, for example, the recently introduced local energy decomposition analysis. In order to draw connections between different interpretative frameworks, these schemes are compared with other popular approaches for the quantification and analysis of NCIs, such as Symmetry Adapted Perturbation Theory and supermolecular EDAs based on mean‐field as well as correlated approaches. Strengths and limitations of the various techniques are discussed.