English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Opacity distribution functions for stellar spectra synthesis

MPS-Authors
/persons/resource/persons241131

Černetič,  Miha
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons189132

Shapiro,  Alexander
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;
ERC Starting Grant: Connecting Solar and Stellar Variabilities (SOLVe), Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons205148

Witzke,  Veronika
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104034

Krivova,  Natalie A.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons104218

Solanki,  Sami K.
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

/persons/resource/persons241133

Tagirov,  Rinat
Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Černetič, M., Shapiro, A., Witzke, V., Krivova, N. A., Solanki, S. K., & Tagirov, R. (2019). Opacity distribution functions for stellar spectra synthesis. Astronomy and Astrophysics, 627: A157. doi:10.1051/0004-6361/201935723.


Cite as: http://hdl.handle.net/21.11116/0000-0004-A8E4-D
Abstract
Context. Stellar spectra synthesis is essential for the characterization of potential planetary hosts. In addition, comprehensive stellar variability calculations with fast radiative transfer are needed to disentangle planetary transits from stellar magnetically driven variability. The planet-hunting space telescopes, such as CoRoT, Kepler, and TESS, bring vast quantities of data, rekindling the interest in fast calculations of the radiative transfer. Aims. We revisit the opacity distribution functions (ODF) approach routinely applied to speed up stellar spectral synthesis. To achieve a considerable speedup relative to the state of the art, we further optimize the approach and search for the best ODF configuration. Furthermore, we generalize the ODF approach for fast calculations of flux in various filters often used in stellar observations. Methods. In a parameter-sweep fashion, we generated ODF in the spectral range from UV to IR with different setups. The most accurate ODF configuration for each spectral interval was determined. We adapted the wavelength grid based on the transmission curve for calculations of the radiative fluxes through filters before performing the normal ODF procedure. Results. Our optimum ODF configuration allows for a three-fold speedup, compared to the previously used ODF configurations. The ODF generalization to calculate fluxes through filters results in a speedup of more than two orders of magnitude.