Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Impact of heating on passive and active biomechanics of suspended cells

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chan, C. J., Whyte, G., Boyde, L., Salbreux, G., & Guck, J. (2014). Impact of heating on passive and active biomechanics of suspended cells. INTERFACE FOCUS, 4(2 SI): 20130069. doi:10.1098/rsfs.2013.0069.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-B118-9
Zusammenfassung
A cell is a complex material whose mechanical properties are essential for its normal functions. Heating can have a dramatic effect on these mechanical properties, similar to its impact on the dynamics of artificial polymer networks. We investigated such mechanical changes by the use of a microfluidic optical stretcher, which allowed us to probe cell mechanics when the cells were subjected to different heating conditions at different time scales. We find that HL60/ S4 myeloid precursor cells become mechanically more compliant and fluid-likewhen subjected to either a sudden laser-induced temperature increase or prolonged exposure to higher ambient temperature. Above a critical temperature of 52 +/- 18 degrees C, we observed active cell contraction, which was strongly correlatedwith calciuminflux through temperature-sensitive transient receptor potential vanilloid 2 (TRPV2) ion channels, followed by a subsequent expansion in cell volume. The change from passive to active cellular response can be effectively described by a mechanical model incorporating both active stress and viscoelastic components. Our work highlights the role of TRPV2 in regulating the thermomechanical response of cells. It also offers insights into how cortical tension and osmotic pressure govern cell mechanics and regulate cell-shape changes in response to heat and mechanical stress.