English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy

MPS-Authors
There are no MPG-Authors available
External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Christ, A. F., Franze, K., Gautier, H., Moshayedi, P., Fawcett, J., Franklin, R. J. M., et al. (2010). Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. JOURNAL OF BIOMECHANICS, 43(15), 2986-2992. doi:10.1016/j.jbiomech.2010.07.002.


Cite as: http://hdl.handle.net/21.11116/0000-0004-B3EA-A
Abstract
The mechanical properties of tissues are increasingly recognized as important cues for cell physiology and pathology. Nevertheless, there is a sparsity of quantitative, high-resolution data on mechanical properties of specific tissues. This is especially true for the central nervous system (CNS), which poses particular difficulties in terms of preparation and measurement. We have prepared thin slices of brain tissue suited for indentation measurements on the micrometer scale in a near-native state. Using a scanning force microscope with a spherical indenter of radius similar to 20 mu m we have mapped the effective elastic modulus of rat cerebellum with a spatial resolution of 100 mu m. We found significant differences between white and gray matter, having effective elastic moduli of K=294 +/- 74 and 454 +/- 53 Pa, respectively, at 3 mu m indentation depth (n(g) = 245, n(w)=150 in four animals, p < 0.05; errors are SD). In contrast to many other measurements on larger length scales, our results were constant for indentation depths of 2-4 mu m indicating a regime of linear effective elastic modulus. These data, assessed with a direct mechanical measurement, provide reliable high-resolution information and serve as a quantitative basis for further neuromechanical investigations on the mechanical properties of developing, adult and damaged CNS tissue. (C) 2010 Elsevier Ltd. All rights reserved.