English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys

MPS-Authors
/persons/resource/persons212871

Kontis,  Paraskevas
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136394

Peng,  Zirong
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons225093

He,  Junyang
High-Entropy Alloys, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons136727

Kwiatkowski da Silva,  Alisson
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons185411

Gault,  Baptiste
Atom Probe Tomography, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;
Imperial College, Royal School of Mines, Department of Materials, London, SW7 2AZ, UK;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kontis, P., Chauvet, E., Peng, Z., He, J., Kwiatkowski da Silva, A., Raabe, D., et al. (2019). Atomic-scale grain boundary engineering to overcome hot-cracking in additively-manufactured superalloys. Acta Materialia, 177, 209-221. doi:10.1016/j.actamat.2019.07.041.


Cite as: http://hdl.handle.net/21.11116/0000-0004-ACAC-9
Abstract
There is no abstract available