English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Time-resolved crystallography reveals allosteric communication aligned with molecular breathing

MPS-Authors
/persons/resource/persons209117

Mehrabi,  P.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Medical Biophysics, University of Toronto;
The Campbell Family Cancer Research Institute, Ontario Cancer Institute;

/persons/resource/persons202768

Schulz,  E.-C.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons194594

Dsouza,  R.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Department of Physics, University of Hamburg;

/persons/resource/persons197908

Müller-Werkmeister,  H.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Institute of Chemistry - Physical Chemistry, University of Potsdam;

/persons/resource/persons182596

Tellkamp,  F.
Machine Physics, Scientific Service Units, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons136024

Miller,  R. J. D.
Miller Group, Atomically Resolved Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Departments of Chemistry and Physics, University of Toronto;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mehrabi, P., Schulz, E.-C., Dsouza, R., Müller-Werkmeister, H., Tellkamp, F., Miller, R. J. D., et al. (2019). Time-resolved crystallography reveals allosteric communication aligned with molecular breathing. Science, 365(6458), 1167-1170. doi:10.1126/science.aaw9904.


Cite as: https://hdl.handle.net/21.11116/0000-0004-ACDC-3
Abstract
A comprehensive understanding of protein function demands correlating structure and dynamic changes. Using time-resolved serial synchrotron crystallography, we visualized half-of-the-sites reactivity and correlated molecular-breathing motions in the enzyme fluoroacetate dehalogenase. Eighteen time points from 30 milliseconds to 30 seconds cover four turnover cycles of the irreversible reaction. They reveal sequential substrate binding, covalent-intermediate formation, setup of a hydrolytic water molecule, and product release. Small structural changes of the protein mold and variations in the number and placement of water molecules accompany the various chemical steps of catalysis. Triggered by enzyme-ligand interactions, these repetitive changes in the protein framework’s dynamics and entropy constitute crucial components of the catalytic machinery.