English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Controlled exploration of chemical space by machine learning of coarse-grained representations

MPS-Authors

Hoffmann,  Christian
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons206209

Menichetti,  Roberto
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons206211

Kanekal,  Kiran
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;

/persons/resource/persons130617

Bereau,  Tristan
Dept. Kremer: Polymer Theory, MPI for Polymer Research, Max Planck Society;
Emmy Noether Group Bereau: Biomolecular Simulations, MPI for Polymer Research, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hoffmann, C., Menichetti, R., Kanekal, K., & Bereau, T. (2019). Controlled exploration of chemical space by machine learning of coarse-grained representations. Physical Review E, 100(3): 033302. doi:10.1103/PhysRevE.100.033302.


Cite as: http://hdl.handle.net/21.11116/0000-0004-AF17-E
Abstract
There is no abstract available