English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Nonlinear dynamics of weakly dissipative optomechanical systems

MPS-Authors

Figueiredo Roque,  Thales
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201125

Marquardt,  Florian
Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society;
Institute for Theoretical Physics, Department of Physics, University of Erlangen-Nürnberg;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)

2019_basin_attraction_site.png
(Supplementary material), 7KB

Citation

Figueiredo Roque, T., Marquardt, F., & Yevtushenko, O. M. (2020). Nonlinear dynamics of weakly dissipative optomechanical systems. New Journal of Physics, (22): 013049. doi:10.1088/1367-2630/ab6522.


Cite as: https://hdl.handle.net/21.11116/0000-0004-B57E-3
Abstract
Optomechanical systems attract a lot of attention because they provide a novel platform for quantum measurements, transduction, hybrid systems, and fundamental studies of quantum physics. Their classical nonlinear dynamics is surprisingly rich and so far remains underexplored. Works devoted to this subject have typically focussed on dissipation constants which are substantially larger than those encountered in current experiments, such that the nonlinear dynamics of weakly dissipative optomechanical systems is almost uncharted waters. In this work, we fill this gap and investigate the regular and chaotic dynamics in this important regime. To analyze the dynamical attractors, we have extended the "Generalized Alignment Index" method to dissipative systems. We show that, even when chaotic motion is absent, the dynamics in the weakly dissipative regime is extremely sensitive to initial conditions. We argue that reducing dissipation allows chaotic dynamics to appear at a substantially smaller driving strength and enables various routes to chaos. We identify three generic features in weakly dissipative classical optomechanical nonlinear dynamics: the Neimark-Sacker bifurcation between limit cycles and limit tori (leading to a comb of sidebands in the spectrum), the quasiperiodic route to chaos, and the existence of transient chaos.