English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Tailored ensembles of neural networks optimize sensitivity to stimulus statistics

MPS-Authors
/persons/resource/persons173580

Levina,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Zierenberg, J., Wilting, J., Priesemann, V., & Levina, A. (2020). Tailored ensembles of neural networks optimize sensitivity to stimulus statistics. Physical Review Research, 2: 013115, pp. 1-9. doi:10.1103/PhysRevResearch.2.013115.


Cite as: https://hdl.handle.net/21.11116/0000-0004-B5DE-6
Abstract
The dynamic range of stimulus processing in living organisms is much larger than a single neural network can explain. For a generic, tunable spiking network we derive that while the dynamic range is maximal at criticality, the interval of discriminable intensities is very similar for any network tuning due to coalescence. Compensating coalescence enables adaptation of discriminable intervals. Thus, we can tailor an ensemble of networks optimized to the distribution of stimulus intensities, e.g., extending the dynamic range arbitrarily. We discuss potential applications in machine learning.