Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Sparse coding predicts optic flow specificities of zebrafish pretectal neurons

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ecke, G., Bruijns, S., Hölscher, J., Mikulasch, F., Witschel, T., Arrenberg, A., et al. (2020). Sparse coding predicts optic flow specificities of zebrafish pretectal neurons. Neural Computing and Applications, 32(11), 6745-6754. doi:10.1007/s00521-019-04500-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-B6E3-E
Zusammenfassung
Zebrafish pretectal neurons exhibit specificities for large-field optic flow patterns associated with rotatory or translatory body motion. We investigate the hypothesis that these specificities reflect the input statistics of natural optic flow. Realistic motion sequences were generated using computer graphics simulating self-motion in an underwater scene. Local retinal motion was estimated with a motion detector and encoded in four populations of directionally tuned retinal ganglion cells, represented as two signed input variables. This activity was then used as input into one of three learning networks: a sparse coding network (competitive learning), PCA whitening with subsequent sparse coding, and a backpropagation network (supervised learning). All simulations developed specificities for optic flow which are comparable to those found in a neurophysiological study (Kubo et al. in Neuron 81(6):1344–1359, 2016. https://doi.org/10.1016/j.neuron.2014.02.043), but relative frequencies of the various neuronal responses were best modeled by the sparse coding approach without whitening. We conclude that the optic flow neurons in the zebrafish pretectum do reflect the optic flow statistics. The predicted vectorial receptive fields show not only typical optic flow fields but also “Gabor” and dipole-shaped patterns that likely reflect difference fields needed for reconstruction by linear superposition.