Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

Hyperpolarized high order multiple quantum coherences at ultra‐low fields

MPG-Autoren
/persons/resource/persons133443

Buckenmaier,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons216006

Fehling,  P
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons214707

Rudolph,  M
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Buckenmaier, K., Scheffler, K., Plaumann, M., Fehling, P., Bernarding, J., Rudolph, M., et al. (2019). Hyperpolarized high order multiple quantum coherences at ultra‐low fields. ChemPhysChem, 20(21), 2823-2829. doi:10.1002/cphc.201900757.


Zusammenfassung
The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and Ultra‐Low Fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Here we present a method for the simultaneous excitation and observation of homo‐ and heteronuclear multiple quantum coherences (from zero up to the third‐order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear COrrelated SpectroscopY (COSY); its combination with a phase‐cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with a Superconducting QUantum Interference Device (SQUID)‐based NMR system.