English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deciphering the Interface of a High-Voltage (5 V-Class) Li-Ion Battery Containing Additive-Assisted Sulfolane-Based Electrolyte

MPS-Authors
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  Liu Hao
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lu, D., Xu, G., Hu, Z., Cui, Z., Wang, X., Li, J., et al. (2019). Deciphering the Interface of a High-Voltage (5 V-Class) Li-Ion Battery Containing Additive-Assisted Sulfolane-Based Electrolyte. Small Methods, 1900546, pp. 1-11. doi:10.1002/smtd.201900546.


Cite as: https://hdl.handle.net/21.11116/0000-0004-BDB7-9
Abstract
Next generation high energy density lithium-ion batteries have aroused great interests worldwide. Herein, in a high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB (graphitic mesocarbon microbeads) battery system using 1 m lithium difluoro(oxalate)borate/sulfolane, tris(trimethylsilyl) phosphite (TMSP) additive is added to significantly improve room/high temperature cycling performances. The unchanged X-ray diffraction patterns suggest the bulk crystal structure of cycled MCMB anode and LiNi0.5Mn1.5O4 cathode are well preserved. Moreover, soft X-ray absorption spectroscopy (XAS) taken from bulk sensitive fluorescence-yield (FY) mode reveals the unchanged bulk electronic structure of cycled LiNi0.5Mn1.5O4 cathode. Therefore, it is concluded that only interface instability contributes to capacity fading of full-cells. However, electrode/electrolyte interface and corresponding interfacial reaction processes are always “enigmatic.” First, X-ray photoelectron spectroscopy (XPS) and in situ differential electrochemical mass spectrometry (DEMS) are used to more accurately decipher the TMSP additive action mechanism in MCMB/electrolyte interfacial reaction processes, by identifying the interfacial solid and gas byproducts, respectively. Then, the crucial role of TMSP additive in modifying cathode/electrolyte interface is revealed by XPS and soft XAS taken from surface sensitive total electron yield (TEY) mode. This paper provides valuable perspectives for formulating novel electrolytes, and for more accurately depicting additive action mechanism in “enigmatic” electrode/electrolyte interfacial reaction processes. © 2019 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim