Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of an identified dimer vibration on the emission spectrum of [2,2]paracyclophane

MPG-Autoren
/persons/resource/persons93125

Goldacker,  Wilfried
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95265

Schweitzer,  Dieter
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons217876

Dinse,  Klaus−Peter
Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93336

Hausser,  Karl H.
Department of Molecular Physics, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Goldacker, W., Schweitzer, D., Dinse, K., & Hausser, K. H. (1980). Influence of an identified dimer vibration on the emission spectrum of [2,2]paracyclophane. Chemical Physics, 48(1), 105-111. doi:10.1016/0301-0104(80)80010-3.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-BEA4-D
Zusammenfassung
The emission spectrum of polycrystalline [2,2]paracylophane shows a resolved vibronic structure with a 241 cm−1 progression at He temperatures. The dependence of the energy of this mode upon selective deuteration in combination with results from FIR and Raman spectra could be used to identify the mode as a torsional dimer vibration. The emission spectra could be simulated assuming a linear coupling of the torsional mode to the electronic transitions with coupling strengths of S = 10 (fluorescence) and S = 13 (phosphorescence). This corresponds to an equilibrium displacement of the benzene rings under electronic excitation by a torsional angle of 10.6° (S1) and 12.1° (T1), in addition to the small torsion in the ground state S0 by about 3°.