English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Avoided quasiparticle decay from strong quantum interactions

MPS-Authors
/persons/resource/persons217473

Verresen,  Ruben
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

/persons/resource/persons145694

Moessner,  Roderich
Max Planck Institute for the Physics of Complex Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Verresen, R., Moessner, R., & Pollmann, F. (2019). Avoided quasiparticle decay from strong quantum interactions. Nature Physics, 15(8), 750-753. doi:10.1038/s41567-019-0535-3.


Cite as: https://hdl.handle.net/21.11116/0000-0004-C7A6-0
Abstract
Quantum states of matter-such as solids, magnets and topological phases-typically exhibit collective excitations (for example, phonons, magnons and anyons)(1). These involve the motion of many particles in the system, yet, remarkably, act like a single emergent entity-a quasiparticle. Known to be long lived at the lowest energies, quasiparticles are expected to become unstable when encountering the inevitable continuum of many-particle excited states at high energies, where decay is kinematically allowed. Although this is correct for weak interactions, we show that strong interactions generically stabilize quasiparticles by pushing them out of the continuum. This general mechanism is straightforwardly illustrated in an exactly solvable model. Using state-of-the-art numerics, we find it at work in the spin-1/2 triangular-lattice Heisenberg antiferromagnet (TLHAF). This is surprising given the expectation of magnon decay in this paradigmatic frustrated magnet. Turning to existing experimental data, we identify the detailed phenomenology of avoided decay in the TLHAF material(2) Ba3CoSb2O9, and even in liquid helium(3-8), one of the earliest instances of quasiparticle decay(9). Our work unifies various phenomena above the universal low-energy regime in a comprehensive description. This broadens our window of understanding of many-body excitations, and provides a new perspective for controlling and stabilizing quantum matter in the strongly interacting regime.